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Effect of the Darrieus-Landau instability on turbulent flame velocity
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The propagation of turbulent premixed flames influenced by the intrinsic hydrodynamic flame instability~the
Darrieus-Landau instability! is considered in a two-dimensional case using the model nonlinear equation
proposed recently by Bychkov@Phys. Rev. Lett.84, 6122~2000!#. The nonlinear equation takes into account
both the influence of external turbulence and the intrinsic properties of a flame front, such as small but finite
flame thickness and realistically large density variations across the flame front. Dependence of the flame
velocity on the turbulent length scale, turbulent intensity, and density variations is investigated in the case of
weak nonlinearity and weak external turbulence. It is shown that the Darrieus-Landau instability influences the
flamelet velocity considerably. The obtained results are in agreement with experimental data on the turbulent
burning of moderate values of the Reynolds number.
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I. INTRODUCTION

Turbulent flame velocityUw is one of the basic characte
istics of premixed turbulent combustion; it is a key parame
for phenomenological models of the combustion process
a promising tool for multidimensional computations of tu
bulent burning in real industrial devices@1,2#. Turbulent
combustion may proceed in several distinctive regimes w
quite different properties@1#. Among them the so-called
‘‘flamelet’’ regime is the most typical for practical system
such as gas turbines of power plants or car engines. In
case of flamelet burning a chemical reaction occurs at
time scales and short length scales relative to the turbu
ones. A flamelet propagates as a relatively thin front with
inner structure similar to the laminar flame of some thickn
L f , but turbulent flow distorts the flame strongly on lar
length scales in comparison withL f . Larger surface area of
corrugated flame front leads to larger consumption rate of
fuel mixture, larger total heat release and larger velocity
flame propagationUw in comparison with the laminar flam
velocity U f . As a result, turbulence increases the pow
available from a turbine combustor or internal combust
engine.

The regime of turbulent flamelets has been studied th
retically for a long time and many interesting results ha
been obtained@3–8#. However, most of these results we
restricted to the artificial limit of zero thermal expansio
when the density of the burnt matterrb is the same as in the
fuel mixture r f with their ratio Q5r f /rb51. In this limit
flame propagates passively in the turbulent flow without
fecting the flow. Yet, most of the laboratory flames invol
considerable thermal expansionQ55 –10 for which the
flame interacts with the turbulent flow quite strongly. Due
this reason the artificial limit of zero thermal expansionQ
51 cannot provide a quantitative description of turbule
flames. Besides, thermal expansion leads to qualitatively
effects of flame-flow interaction such as the Darrieus-Lan
~DL! instability. In the case of laminar flames the DL inst
bility bends an initially planar flame front increasing the v
1063-651X/2002/66~2!/026310~12!/$20.00 66 0263
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locity of flame propagation@9–11#. Similar effects are ex-
pected for turbulent flamelets at least in the limit of weak a
moderate turbulent intensity. The role of the DL instabili
for turbulent flamelets has been widely discussed, but in
papers one could find real attempts to solve the prob
because of the involved mathematical and computational
ficulties @7,12,13#. However, even these papers conside
only the limit of ultimately weak instability at small therma
expansionQ21!1 ~or Q,2 in @13#!. If one takes the arti-
ficial limit of zero thermal expansionQ51 like @3–6,8#,
then the DL instability disappears. Even in the case of la
nar flames the nonlinear theory of the DL instability has be
restricted for a long time to the limit of small thermal expa
sionQ21!1 @14,15#. Quantitative nonlinear theoretical de
scription of the DL instability for realistically large expan
sion factorsQ was developed recently@10,16,17#. Of course,
the instability effect on turbulent flames could be studied
direct numerical simulations of the complete set of comb
tion equations, but simulations performed so far conside
flame dynamics on small length scales below 10L f @18,19#,
for which the DL instability is thermally suppressed.

Recently a nonlinear equation has been proposed, w
takes into account both the influence of external turbule
and the DL instability with realistically large density varia
tions across the flame front@20#. Preliminary evaluations of
the turbulent flame velocity on the basis of the obtain
equation@20,21# agree quite well with experimental resul
@22,23#. Still, the particular solutions to the nonlinear equ
tion @20,21# did not include the direct influence of the D
instability. Though such solution may be used to descr
flame dynamics for a rather low integral turbulent leng
scale of about~30–50)L f as in experiments@23#, a more
common experimental situation involves large length sca
exceeding 100L f considerably@22#, for which the DL insta-
bility affects the flame velocity significantly. In the prese
paper we solve the nonlinear equation@20# in order to inves-
tigate the effect of the DL instability on the dynamics
turbulent flames.
©2002 The American Physical Society10-1
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II. MODEL EQUATION

We solve the following model equation describing d
namics of a flame frontz5F(x,t) in a weakly turbulent flow
u(x,t):

Q11

2Q
~11C1L fF̂!

F̂21

U f
2

]2F

]t2
1~11C2L fF̂!

1

U f

]F

]t
11

2Uw /U f1
Q

2
~¹F !21

~Q21!3

16Q
@~¹F !22~F̂F !2#

2
Q21

2 S 12
lc

2p
F̂ D F̂F2S 11

F̂21

U f

]

]t
D uz

U f
50. ~1!

The above equation, Eq.~1!, has been proposed in@20#; and
in the section below we explain the origin and the ma
components of the equation. Besides, we consider some
ticular solutions to Eq.~1! obtained before. Equation~1! is
written in the reference frame of the average position o
statistically stationary turbulent flame front, with the avera
velocity Uw of flame propagation being slightly differen
from the laminar flame velocityU f . The main advantage o
Eq. ~1! in comparison with the earlier models of turbule
flames@3–5# is that it takes into account realistically larg
density variations across the flame front described by
factor Q5r f /rb51, which is the density ratio of the fue
mixture r f and the burnt matterrb . Parameterslc ,C1 ,C2
are related to the internal thermal-chemical properties of
flame front. These parameters have been found in the lin
theory of the DL instability of a flame of finite thicknessL f

@24,25#. The operatorF̂ implies multiplication by the abso
lute value of the wave number component along the fla
surface in Fourier space, which may be presented in the
of a two-dimensional~2D! flow as

F̂F5
1

2pE ukuFk exp~ ikx!dk. ~2!

Model equation~1! has been proposed on the basis of th
rigorous theories: the linear theory of the DL instability b
Pelce and Clavin@24#, the nonlinear theory of curved flame
resulting from the instability by Bychkov@10#, and the linear
theory of flame response to weak turbulence by Searby
Clavin @26#. Below we explain briefly the main results of th
theories as well as components of the model equation~1!.

It has been shown@24# that the development of sma
perturbations at an initially planar flame front may be d
scribed by the equation

Q11

2Q
~11C1L fF̂!

]2F

]t2
1~11C2L fF̂!U fF̂

]F

]t

2
Q21

2 S 12
lc

2p
F̂ DU f

2F̂2F50. ~3!

Equation~3! has been obtained taking into account small
finite flame thicknessL f . The numerical factorsC1 ,C2 and
the cutoff wavelengthlc depend on the internal flame stru
02631
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ture @24,25#. Particularly, in the case of a flame with Lew
number equal to unity and a constant coefficient of therm
conduction the respective formulas are

lc52pL fS 11Q
Q11

~Q21!2
ln Q D ,

C150, C25
Q ln Q

~Q21!
. ~4!

In the case of an infinitely thin front Eq.~3! goes over to the
Darrieus-Landau dispersion relation sincelc}L f @24#. Ac-
cording to Eq.~3! small perturbations of a planar flame gro
exponentially in time if the perturbation wavelength excee
the cutoff wavelengthlc . Equation~3! is the first component
of the nonlinear model~1!.

If a flame front propagates in a 2D channel of widthR
with ideally slip and adiabatic walls, then the DL instabili
is thermally suppressed in narrow tubes withR,Rc5lc/2.
In wider tubesR.Rc perturbations grow exponentially unt
nonlinear effects come to play. In tubes of a moderate wi
R,(4 –5)Rc nonlinear stabilization takes place leading to
smooth curved stationary flame shape@10,11,26#. The curved
flame shape and velocity may be described by the nonlin
equation derived in@10#:

12Uw /U f1
Q

2
~¹F !21

~Q21!3

16Q
@~¹F !22~F̂F !2#

2
Q21

2 S 12
lc

2p
F̂ D F̂F50, ~5!

whereUw is the propagation velocity of a curved~wrinkled!
flame front, which is larger thanU f . The nonlinear terms in
Eq. ~5! take into account both the cusp formation at the fla
front and the vorticity production behind a curved flam
Equation~5! has been derived for arbitrary expansion co
ficients ~even large ones! assuming small but finite flame
thickness similar to the linear theory@24#. The thermal-
chemical properties of the burning mixture are taken in
account in Eq.~5! by the cutoff wavelengthlc , the analyti-
cal formula for which coincides with the expression obtain
in the linear theory. The combination of Eqs.~3! and ~5!
determines the effects of flame-flow interaction in Eq.~1! in
the absence of external turbulence. The influence of tur
lence is taken into account according to the linear theory@26#
for a flame front in a weak external flow

Q11

2Q

]2F

]t2
1U fF̂

]F

]t
2

Q21

2
U f

2F̂2F2S U fF̂1
]

]t Duz50,

~6!

where uz is the z component of turbulent velocity at th
surfacez50. Assuming weak nonlinear effects, weak turb
lence, and a thin flame front, we can combine Eqs.~3!, ~5!,
and~6! into one model equation~1!, as it has been propose
in @20#.
0-2
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In the present paper we consider a 2D flame propaga
in a ‘‘tube’’ of width R with adiabatic boundary condition a
the walls

dF

dx
50 at x50,R, ~7!

so that the flame shape may be presented as

F5( Fn cosS pnx

R D ~8!

with the operatorF̂,

F̂F5(
pn

R
Fn cosS pnx

R D . ~9!

Equation~1! for a 2D flow becomes

Q11

2Q
~11C1L fF̂!

F̂21

U f
2

]2F

]t2
1~11C2L fF̂!

1

U f

]F

]t
11

2Uw /U f1
Q

2 S ]F

]x D 2

1
~Q21!3

16Q F S ]F

]x D 2

2~F̂F !2G
2

Q21

2 S 12
Rc

p
F̂ D F̂F2S 11

F̂21

U f

]

]t
D uz

U f
50.

~10!

Incompressible 2D turbulence in the laboratory refere
frame may be described by the representation@7#

uz5( Ui cos~kiz1f i !cos~kix!, ~11!

ux5( Ui sin~kiz1f i !sin~kix!, ~12!

where we have taken the continuity condition into accou
In Eqs. ~11! and ~12! ki5p i /R are the wave numbers o
turbulent harmonics andf i stand for random phases. Th
amplitudesUi of turbulent harmonics are determined by t
Kolmogorov spectrumUi}ki

25/6 with the rms-turbulent ve-
locity in one direction given by the formula

Urms
2 5( Ui

2/4. ~13!

The number of turbulent harmonics in Eqs.~11! and~12!
is a free parameter of our model. In the case of a fre
propagating flame front thex dependence of turbulent veloc
ity also includes random phases. However, since we are
terested in flame propagation in a channel of finite wid
with slip walls, then the boundary condition on the wa
requires zero phases. In general, the turbulent velocity fi
~11! and ~12! should also involve temporal pulsations. Th
influence of temporal pulsations has been investigated
cently in @27#, where it has been shown that temporal pul
tions do not lead to any qualitatively new effect in turbule
02631
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flame propagation. By this reason in the present paper
will use the Taylor hypothesis of ‘‘stationary’’ turbulence, fo
which pulsations caused by flame propagation are m
stronger than ‘‘real’’ temporal pulsations of the flow veloci
in Eqs.~11! and~12!. The Taylor hypothesis has been used
many papers on turbulent flame dynamics@3,5–7,28#. Since
the model equation~1! is written in the reference frame of
statistically stationary turbulent flame, then we have to
over to the same reference frame in the formulas for
turbulent velocity field~11! and ~12!. In the case of weak
turbulence we have the longitudinal turbulent velocity fie
at the front positionz5U ft,

uz5( Ui cos~U fki t1f i !cos~kix!. ~14!

Equation~1! has been solved before in two particular cas
~a! no turbulenceUrms50, when dynamics of the flame fron
is affected by the DL instability only;~b! no direct influence
of the DL instability, when only external turbulence contro
flame propagation. Below we consider briefly solution to E
~1! in both cases.

A. Influence of the DL instability only

If the turbulent intensity is zeroUrms50, then the model
equation~1! describes the linear development of the DL i
stability at an initially planar flame front and subseque
propagation of a wrinkled flame resulting from the instab
ity. As it has been pointed above, the instability develops a
a curved flame shape becomes possible in sufficiently w
tubesR/Rc.1 with the critical tube widthRc determined by
thermal-chemical flame parameters: for example,Rc5lc/2
in the case of a 2D flow in a channel with ideally slip an
adiabatical walls. If the channel width is not too larg
R/Rc,5, then the DL instability results in a smooth curve
flame shape propagating with velocity@10#

Uw /U f215
2Q~Q21!2

Q31Q213Q21
M

Rc

R S 12M
Rc

R D ,

~15!

where M5Int(2R/Rc11/2). Figure 1 presents the depe
dence of the wrinkled flame velocity on the tube widthR/Rc
for the expansion factorsQ55,7,9. As one can see, th
wrinkled flame velocity exceeds the planar flame veloc
because of the larger surface of fuel consumption. The
ference between the wrinkled and planar flame velocities
comes larger for larger thermal expansionQ, since largerQ
~larger density difference across the flame! leads to stronger
DL instability. The analytical formula~15! agrees quite well
with the results of the direct numerical simulations of flam
dynamics in tubes@11,29#. As the tube width increase
R/Rc→` wrinkled flame velocity tends to a limiting value

Uw /U f215
1

2

Q~Q21!2

Q31Q213Q21
, ~16!
0-3
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which determines a maximal possible velocity increase fo
stationary wrinkled flame. However, the maximal veloc
may be achieved even for tubes of a moderate width,
example, forR52Rc . The maximal velocity increase~16!
depends only on the expansion factorQ.

In the present paper we are interested, mostly, in fla
propagation in channels of moderate widthR/Rc,5, for
which the DL instability results in stationary wrinkle
flames. In much wider tubes the curved stationary shape
comes unstable with respect to the secondary DL instab
of a small scale@16#. At that point it is interesting that the
model equation~1! describes also the stability limits of th
secondary DL instability, which are in good agreement w
the results of direct numerical simulations@11#.

B. Influence of external turbulence only

The model equation~1! has also a particular solution re
lated to the external turbulence only with no direct influen
of the DL instability. Such solution has been found in@20#
for a 3D turbulent flow. We now obtain a 2D version of th
solution taking into account the condition of weak turb
lence. In the case of a turbulent flow~14! we can rewrite the
turbulent terms of Eq.~1! as follows:

S 11
F̂21

U f

]

]t
D uz

U f

5(
Ui

U f
@cos~U fki t1f i !2sin~U fki t1f i !#cos~kix!

5( A2
Ui

U f
FcosS U fki t1f i1

p

4 D Gcos~kix!. ~17!

We can also look for a flame front positionF5F(x,t) in a
similar form,

F5( Fi~ t !cos~kix!. ~18!

FIG. 1. Scaled velocity of a curved stationary flameUw /U f

21 vs the scaled tube widthR/Rc for different thermal expansion
Q55,7,9 according to Eq.~15! with no turbulence.
02631
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Substituting Eq.~18! into model equation~1! with the accu-
racy of linear terms we come to a system of ordinary diff
ential equations forFi ,

Q11

2Q
~11C1L fki !

1

kiU f
2

d2Fi

dt2
1~11C2L fki !

1

U f

dFi

dt

2
Q21

2
~12Rcki /p!kiF

5A2
Ui

U f
cosS U fki t1f i1

p

4 D ~19!

with the following solution:

Fi~ t !5
A2Ui

DikiU f
cosS U fki t1f i1

p

4
1g i D , ~20!

where

Di5F S Q21

2
~12Rcki /p!2

Q11

2Q
~11C1L fki ! D 2

1~11C2L fki !
2G1/2

~21!

and the phase shiftg i is determined by the expressions

cosg i5
1

Di
S Q21

2
~12Rcki /p!2

Q11

2Q
~11C1L fki ! D ,

~22!

sing i5
1

Di
~11C2L fki !. ~23!

The average turbulent flame velocity is related to the non
ear terms of Eq.~1!,

Uw /U f215
Q

2 K S ]F

]x D 2L 1
~Q21!3

16Q K S ]F

]x D 2

2~F̂F !2L ,

~24!

where^•••& denotes time and space averaging. Substitut
representation~18! with amplitudes~20! into Eq. ~24! we
find the turbulent flame velocity in the case of no dire
influence of the DL instability

Uw /U f215
Q

4U f
2 (

Ui
2

Di
2

. ~25!

In the artificial limit of zero thermal expansionQ51 and
R/L f→` the obtained formula~25! agrees with the well-
known Clavin-Williams formula@3# written for the 2D tur-
bulence models~11! and ~12!:

Uw /U f215
Urms

2

2U f
2

. ~26!
0-4
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Both the velocity amplitudesUi and the factorsDi in Eq.
~25! depend on wave numberski , which, in turn, are deter-
mined by the tube widthki5p i /R. As a result, Eq.~25!
specifies the dependence of the turbulent flame velocity
the tube widthR. In order to understand the obtained depe
dence better we consider first a simplified case of a turbu
flow ~14! modeled by a single harmonic

uz5U1 cos~U fk1t !cos~k1x!. ~27!

Such a simplified assumption about a turbulent flow is of
used in direct numerical simulations@8,27,28#. In the case of
a single turbulent harmonic the expression for turbul
flame velocity becomes

Uw /U f215QF S 11pC2

L f

R D 2

1H Q21

2 S 12
Rc

R D
2

Q11

2Q S 11pC1

L f

R D J 2G21 Urms
2

U f
2

. ~28!

The dependence~28! is presented in Fig. 2 for the case
unit Lewis number Le51 and a constant coefficient of the
mal conduction, for which the cutoff wavelengthlc52Rc

FIG. 2. Scaled turbulent flame velocityUw /U f21 vs the scaled
tube widthR/Rc for one turbulent harmonic with no direct influenc
of the DL instability: ~a! Urms /U f50.5 and differentQ; ~b! for
Q57 and different turbulent intensitiesUrms /U f50.2,0.5,1:
curvesA,B,C, respectively.
02631
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and the numerical factorsC1 ,C2 are determined by the for
mula ~4!. The turbulent flame velocity is shown for differen
values of the expansion coefficientQ55,7,9 and for differ-
ent turbulent intensityUrms /U f50.2,0.5,1. As one can see
the dependence of turbulent flame velocity on the tube wi
differs considerably from the previous case of a flame
fected by the DL instability only. Now the critical tube widt
R5Rc is not a point of sharp bifurcation any more, but i
stead one has a smooth resonance atR'Rc @26#. In narrow
tubesR,Rc before the resonance, a curved shape of a fla
front is also possible and the flame velocity exceeds the
nar flame velocityUw.U f . Still, the narrower the tube, the
stronger the stabilizing effects of thermal conduction and
nite flame thickness. According to Eq.~28! at R→0 the
flame velocity is equal to the planar flame velocity. For wid
tubesR.Rc after the resonance the turbulent flame veloc
decreases too, though for very wide tubesR@Rc it tends to a
finite limit

Uw /U f215
4Q3

4Q21~Q222Q21!2

Urms
2

U f
2

. ~29!

A curious point is that the limiting values for the turbule
flame velocity Eq.~29! decrease with an increase of the e
pansion coefficientQ. One can see the same tendency in F
2~a! for Q55,7,9 and a fixed turbulent intensityUrms /U f
50.5. The decrease of turbulent flame velocity in the case
weak turbulence with no direct influence of the DL instab
ity has been obtained already in@20#. Such tendency is op
posite to the previous case of a wrinkled flame shape cau
by the DL instability only, for which flame velocity increase
with Q. Besides, this tendency is also opposite to the sit
tion of strong turbulence@1#: strongly turbulent flames
propagate faster for larger expansion factorsQ. There is no
physical explanation yet, why turbulent flame velocity d
pends on thermal expansionQ in different ways for the case
of weak and strong turbulence. Finally, the dependence
turbulent flame velocityUw /U f on the turbulent intensity
Urms /U f in the case of weak turbulence is the same as in
Clavin-Williams formula: Uw /U f21}Urms

2 /U f
2 , see Fig.

2~b!.
The situation of a large number of turbulent harmonics

Eq. ~14! is more realistic than a single turbulent mode. P
ticularly, Fig. 3 presents the dependence of turbulent fla
velocity on the tube width for 150 turbulent harmonics. As
Fig. 2 we take unit Lewis number Le51 and a constan
coefficient of thermal conduction. The main difference b
tween the plots in Figs. 2 and 3 is that the resonance
practically missing for multiscaled turbulence of Fig. 3. F
example, for the turbulent intensityUrms /U f50.5 and the
expansion factorQ55 the turbulent flame velocity depend
on the tube width in a quite monotonic way increasing fro
U f in narrow tubesR!Rc to the limiting value Eq.~29! in
wide tubesR@Rc . For larger expansion factors and larg
turbulent intensity the slight resonance may be still seen.
reduced effect of resonance atR'Rc for multiscaled turbu-
lence may be easily understood, since now a consider
part of turbulent energy is spread between harmonics o
0-5
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smaller scale, which have resonance at different points. A
from the resonance effect, other tendencies of the turbu
flame velocity remain qualitatively the same for the mu
scaled turbulence and for a single turbulent harmonic.

III. FLAME UNDER SIMULTANEOUS ACTION
OF TURBULENCE AND THE DL INSTABILITY

A. The method of solution

The main purpose of the present paper is to unders
flame dynamics affected both by the DL instability and
external turbulence, that is, to find a more general solutio
Eq. ~1!. Direct numerical simulations are one of the possi
methods to solve Eq.~1!. However, direct numerical simula
tions are typically characterized by a relatively lower acc
racy than the solution to an eigenvalue problem, and sim
lation results are more difficult for analysis. By this reaso
we will solve Eq.~1! as an eigenvalue problem in a sem
analytical way taking into account the conditions of we
turbulence Urms /U f!1 and weak nonlinear effect
(]F/]x)2!1 used in the derivation of Eqs.~3!, ~5!, and~6!.
In that sense we would like to stress that in tubes of mod
ate width with no external turbulence the DL instability r

FIG. 3. Scaled turbulent flame velocityUw /U f21 vs the scaled
tube widthR/Rc for 150 turbulent harmonic with no direct influ
ence of the DL instability:~a! Urms /U f50.5 and differentQ; ~b!
for Q57 and different turbulent intensities Urms /U f

50.2,0.5,0.7,1: curvesA,B,C,D, respectively.
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sults in a stationary curved flame front~see Sec. II A!. On the
contrary, if the flame is affected by external turbulence o
with no direct influence of the DL instability, then the solu
tion to Eq.~1! is strongly oscillating, see Eq.~20!, Sec. II B.
Therefore, it would be reasonable to look for a solution
Eq. ~1! in the form of a combination of a stationary ter
G(x) and a strongly oscillating termH(x,t):

F5G~x!1H~x,t !. ~30!

Substituting Eq.~30! into Eq.~1! and taking time-average w
come to the following equation:

12Uw /U f1
Q

2 S ]G

]x D 2

1
~Q21!3

16Q F S ]G

]x D 2

2~F̂G!2G
1

Q

2 K S ]H

]x D 2L
t

1
~Q21!3

16Q K S ]H

]x D 2

2~F̂H !2L
t

2
Q21

2 S 12
Rc

p
F̂ D F̂G50, ~31!

where^•••& t denotes time averaging. The obtained equat
is similar to the stationary equation~5! describing the non-
linear stage of the DL instability with some correction term
produced by turbulence. Eliminating Eq.~31! out of Eq.~1!
we come to the time-dependent equation for the ‘‘turbule
part of the solution:

Q11

2Q
~11C1L fF̂!

F̂21

U f
2

]2H

]t2
1~11C2L fF̂!

1

U f

]H

]t

1
Q

2 F S ]H

]x D 2

2 K S ]H

]x D 2L
t
G1Q

]G

]x

]H

]x

1
~Q21!3

8Q F]G

]x

]H

]x
2F̂GF̂HG1

~Q21!3

16Q F S ]H

]x D 2

2~F̂H !22 K S ]H

]x D 2

2~F̂H !2L
t
G2

Q21

2

3S 12
Rc

p
F̂ D F̂H2S 11

F̂21

U f

]

]t
D uz

U f
50. ~32!

In the limit of weak turbulence and weak nonlinear effec
all nonlinear terms in Eq.~32! may be neglected, since the
give only small corrections toH, and we come to the linea
equation

Q11

2Q
~11C1L fF̂!

F̂21

U f
2

]2H

]t2
1~11C2L fF̂!

1

U f

]H

]t

2
Q21

2 S 12
Rc

p
F̂ D F̂H2S 11

F̂21

U f

]

]t
D uz

U f
50.

~33!

Then the oscillating termH(x,t) is specified by external tur
bulenceuz only independent of the stationary termG(x) @see
0-6
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Eq. ~33!#. On the other hand, averaged terms withH(x,t)
play the role of ‘‘external force’’ in the stationary equatio
~31!. The solution to Eq.~33! coincides with the solution to
Eq. ~1! presented in Sec. II B. TakingNT turbulent harmonics
in the representation~14! we look for the oscillating term
H(x,t) in the form

H~x,t !5(
i 51

NT

Hi~ t !cosS p ix

R D ~34!

and find

Hi~ t !5
A2Ui

DikiU f
cosS U fki t1f i1

p

4
1g i D , ~35!

whereDi andg i are determined by Eqs.~21!–~23!. Formulas
~34! and ~35! specify the ‘‘external force’’

Q

2 K S ]H

]x D 2L
t

1
~Q21!3

16Q K S ]H

]x D 2

2~F̂H !2L
t

in Eq. ~31!. We solve Eq.~31! numerically with the boundary
conditions~7! taking G(x) in the form

G~x!5(
i 51

N
R

p i
Gi cosS p ix

R D . ~36!

We would like to stress that the number of harmonicsNT in
Eq. ~34! and N in Eq. ~36! are two different values. The
former, NT , shows the number of turbulent modes in t
representation~14! and plays the role of a free parameter
the model. Particularly, Eq.~28! has been obtained under th
assumption of a single turbulent mode,NT51. On the con-
trary, the valueN in Eq. ~36! shows the number of Fourie
harmonics in the numerical solution to Eq.~31!, which is
determined by the accuracy requirements.

In order to simplify the numerical solution it is useful t
perform the following auxiliary calculations:

S ]G

]x D 2

52
1

2 (
m50

2N

Am cosS pmx

R D1
1

2 (
l 52N

l 5N

Bl cosS p lx

R D ,

~37!

~F̂G!25
1

2 (
m50

2N

Am cosS pmx

R D1
1

2 (
l 52N

l 5N

Bl cosS p lx

R D ,

~38!

S ]G

]x D 2

2~F̂G!252 (
m50

2N

Am cosS pmx

R D , ~39!

where A05A150, Am5( i 51
m21GiGm2 i for m>2; B0

5( i 51
N Gi

2 , BN50, andBl5( i 51
N GiGm1 i for 1< l<N21.

After substituting Eqs.~34! and ~37! in to Eq. ~31! and av-
eraging in time we obtain with help of Eqs.~38!–~40! the
following system of algebraic equations forGi and
Urms /U f21:
02631
Uw /U f215
Q

4 S B01
1

U f
2 (

i 51

NT Ui
2

Di
2D , ~40!

Gi S 12 i
Rc

R D2
QBi

Q21
1

1

2 S Q

Q21
1

~Q21!2

4Q D ~Ai1Ai
turb!

50 for i>1, ~41!

where we have introduced the designation

Ai
turb5H Ui /2

2 /~Di /2
2 U f

2! if i mod 250 and 2NT> i

0, if i mod 25” 0 or 2NT, i .
~42!

The systems~40! and ~41! have been solved numerically
However, instead of solving Eq.~41! directly we have intro-
duced and solved the following system of ordinary differe
tial equations involving virtual ‘‘time’’j:

dGi

dj
5Gi S 12 i

Rc

R D2
QBi

Q21
1

1

2 S Q

Q21
1

~Q21!2

4Q D
3~Ai1Ai

turb! for i>1 ~43!

with arbitrary initial values but a fixed value ofRc /R. We
have found numerically that the solution to the system~43!
tends to a unique set of ‘‘stationary’’ valuesGi with a suffi-
ciently small step of virtual ‘‘time’’j independent of the
chosen initial values ofGi . The obtained set of ‘‘stationary’
values gives the solution to Eq.~41! and the turbulent flame
velocity ~40!. The spectral method of numerical solution
Eq. ~31! with boundary conditions~7! provides very good
accuracy. For example, even takingN530 Fourier harmon-
ics in Eq. ~36! we got 5% accuracy of calculations for th
turbulent velocityUw /U f21. In most of the calculations we
used a much larger valueN5150 providing the accuracy fa
better than 1% and good convergence of the Fourier exp
sion Eq.~36!. As an illustration, Fig. 4 shows a spectrum
the numerically obtained solution to Eq.~41! for R/Rc55,
Urms /U f50.5, Q57, N5150, andNT5150. As one can

FIG. 4. SpectrumGi of the numerically obtained stationary so
lution G(x) to Eq. ~42! for R/Rc55, Urms /U f50.5, Q57, N
5150, andNT5150.
0-7
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MAXIM ZAYTSEV AND VITALIY BYCHKOV PHYSICAL REVIEW E 66, 026310 ~2002!
see, in that case the amplitude of the first harmonic exce
the amplitude of the 100th harmonics by five orders of m
nitude. The chosen accuracy of numerical calculations
quite sufficient taking into account that assumptions use
the basic equation~1! @that is, in the derivation of the origi
nal theories~3!, ~5!, and~6!# hold with much worth accuracy
of about 30% and less. As a test of the numerical method
have solved first the stationary nonlinear equation~5!, and
the numerical result coincided with the exact analytical
lution, Eq. ~15!. In order to imitate a multiscaled turbulenc
we took the number of turbulent harmonics in Eq.~34! NT
5150 to be the same asN. Besides, we have also invest
gated the case of a single turbulent modeNT51, which may
be useful in the future for comparison with direct numeric
simulations.

B. Results of numerical solution

The main dimensionless parameters that determine
dynamics of curved flames in ideal tubes are the scaled
width R/Rc , the turbulent intensityUrms /U f , and the expan-
sion factor of the burning mixtureQ. To be particular, in all
calculations we took unit Lewis number Le51 and a con-
stant coefficient of thermal conduction. First of all we ha
investigated the dependence of the turbulent flame velo
Urms /U f21 on the scaled tube width for different values
Q andUrms /U f . We have been interested mostly in tubes
moderate widthR/Rc<5, realistic expansion coefficientsQ
55 –10 and weak external turbulenceUrms /U f<1, for
which the basic equation~1! may be valid.

The results of numerical solution are presented in F
5–7 for NT5150 turbulent harmonics. Particularly, Fig.
shows scaled turbulent flame velocityUrms /U f21 versus
the scaled tube widthR/Rc for some fixed expansion facto
@Q55,7,9 for Figs. 5~a!, 5~b!, 5~c!, respectively# and differ-
ent turbulent intensity. As one can see, the dependence
mains qualitatively the same, as we had in the case o
influence of the DL instability, Sec. II B, Fig. 3~b!. In all
plots turbulent flame velocity increases from the planar fla
velocity U f in narrow tubesR/Rc!1 to some limiting value
in wide tubesR/Rc@1. The increase may be quite mon
tonic, as we have, for example, forQ55 and Urms /U f
50.5. For smaller turbulent intensityUrms /U f50.2 one can
easily see the trace of bifurcation ‘‘humps’’ typical for th
case of the DL instability without turbulence, see Sec. II
Fig. 1. For larger turbulent intensityUrms /U f51 and larger
expansion factorsQ57,9 the bifurcation ‘‘humps’’ vanish,
but instead one can observe the resonance atR'Rc de-
scribed in Sec. II B, Fig. 3. Judging by the qualitative look
the plots in Fig. 5, one could conclude that the influence
the DL instability becomes small already forUrms /U f50.5.
However, this conclusion is wrong as one can see compa
Fig. 5~b! and Fig. 3~b! quantitatively. Indeed, choosing th
problem parametersR/Rc55, Urms /U f50.5, andQ57 as
an example we find an increase of the turbulent flame ve
ity Uw /U f21'1.13 taking into account the DL instabilit
and Uw /U f21'0.42 without the instability. Thus, thoug
the DL instability does not bring anything qualitatively ne
into the plot, it leads to considerable quantitative chan
02631
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increasing the scaled flame velocity almost three times. A
matter of fact, for such strong velocity increase the ba
equation~1! does not hold any more, still it may show ge
eral features of flame front dynamics under simultaneous
tion of external turbulence and the DL instability. To ma
the difference between the cases with and without the
instability more distinctive we present the characteristic
locity increaseUw /U f21 at R/Rc55 versusUrms /U f in

FIG. 5. Scaled turbulent flame velocityUw /U f21 vs the scaled
tube width R/Rc . CurvesA,B,C,D correspond to valuesUrms /
U f50.2,0.5,0.7,1;Q55,7,9 on figures~a!, ~b!, ~c!, respectively.
0-8
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EFFECT OF THE DARRIEUS-LANDAU INSTABILITY . . . PHYSICAL REVIEW E66, 026310 ~2002!
Fig. 6 for both cases. As one can see, the DL instabi
increases the turbulent flame velocity considerably for
turbulent intensities in the domainUrms /U f,1. Besides,
when turbulent intensity goes to zeroUrms /U f→0, the in-
stability still provides a nonzero increase of the flame vel
ity Uw /U f2150.320.4. Obviously, this does not happe

FIG. 6. Scaled turbulent flame velocityUw /U f21 for R55Rc

vs turbulent intensityUrms /U f . The solid and dashed lines sho
the solutions with and without the DL instability, respectively.
02631
y
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for a particular solution without the instability. A curiou
point of Fig. 6 is that the obtained instability influence
much stronger than just formal adding of the ‘‘instability
solution of Sec. II A to the ‘‘purely turbulent’’ solution of
Sec. II B.

Figure 7 presents plots similar to Fig. 5, but now we
turbulent intensity and study the scaled velocity of flam
propagationUw /U f21 for various expansion factorsQ. At
that point one has to remember, thatUw /U f21 depends on
Q in a different way for the cases of a flame affected by
DL instability only or by weak external turbulence only. Fo
the former case it increases with the expansion factor~see
Sec. II A!, while for the latter case it decreases~see Sec.
II B !. One can observe both tendencies in Fig. 7 for the l
iting values ofUw /U f21 achieved for relatively wide tubes
e.g., R/Rc55. In Fig. 7~a! the turbulent intensity is rathe
small Urms /U f50.2 and the characteristic flame velocity
R/Rc55 increases withQ similar to the nonlinear stage o
the DL instability. In Figs. 7~b–d! the turbulent intensity be-
comes largerUrms /U f50.5–1 and the flame velocity a
R/Rc55 decreases with the expansion factorQ as it happens
for weak turbulence with no direct influence of the DL inst
bility.

We have also investigated the case of a single turbu
harmonicNT51 popular in numerical simulations@8,27,28#.
Figure 8 presents the velocity of flame propagation for t
FIG. 7. Scaled turbulent flame velocityUw /U f21 vs the scaled tube widthR/Rc ; Urms /U f50.2,0.5,0.7,1 on figures~a!, ~b!, ~c!, ~d!,
respectively. To distinguish plots we used a dashed line in~a! for Q57.
0-9



se
nc

th

the
hey
ents

e
l

an-
ntal
me,
n
ay
se
-

e
u-
-
ve-
n
lu-

lts
tur-
ng

-
ar-

-
e
t
ves

ber.

s

MAXIM ZAYTSEV AND VITALIY BYCHKOV PHYSICAL REVIEW E 66, 026310 ~2002!
case versus the scaled tube width forQ55,7,9 and
Urms /U f50.2,0.5,1. The main difference between the ca
of a single turbulent harmonic and a multiscaled turbule
is a much more pronounced resonance atR'Rc . Figure 9
shows how the velocity of flame propagation depends on
number of turbulent harmonicsNT : the more harmonics we
take, the smoother resonance we get atR'Rc .

FIG. 8. Scaled turbulent flame velocityUw /U f21 vs the scaled
tube width R/Rc with one turbulent harmonicNT51; Urms /U f

50.2,0.5,1 on figures~a!, ~b!, ~c!, respectively.
02631
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IV. DISCUSSION

The results on turbulent flame dynamics obtained in
present paper may be interpreted in two ways. First, t
may be used to understand flame dynamics in experim
with a relatively small integral turbulent length scale~com-
parable to the cutoff wavelength of the DL instabilitylc! and
relatively low turbulence intensity. Experiments of this typ
have been presented in@23#, where the ratio of the channe
width to the flame thickness~the Peclet number! varied as
R/L f550–250. Since the cutoff wavelength is typicallylc
5(20–50)L f @24,25#, the experiment conditions in@23# are
similar to the case of tubes of a moderate width 1,R/Rc
,5 considered in the present paper. Unfortunately, one c
not compare results of the present paper to the experime
results directly, since the present results describe a 2D fla
while the experimental flow is obviously a 3D one. Still, a
indirect comparison is possible. For that purpose, one m
remember that in the case of the DL instability the increa
of flame velocity is twice larger for a 3D geometry in com
parison with a 2D one@30#. The same relation holds for th
velocity increase of a weakly turbulent flame with no infl
ence of the DL instability@20#. Thus, it would be quite natu
ral to expect that, when both effects work together, the
locity increase is also twice larger for a 3D flow i
comparison with a 2D flow of the present paper. Such eva
ation is shown in Fig. 10 forQ57, R/Rc55 by the dashed
line A, which agrees rather well with the experimental resu
@23# presented by crosses. Accurate investigation of the
bulent flame velocity in a 3D flow requires time-consumi
calculations and will be a subject of future work. For com
parison, Fig. 10 shows also turbulent velocity for a 3D p
ticular solution to Eq.~1! without any direct influence of the
DL instability ~dashed lineB). This plot goes noticeably be
low the experimental points@23#, which demonstrates onc
more the importance of the DL instability for turbulen
flames. It is also interesting to compare the theoretical cur
to the experimental results@31#, where the influence of the
DL instability on turbulent flames in C3H8-air mixture has
been controlled by varying pressure in the burning cham

FIG. 9. Scaled turbulent flame velocityUw /U f21 vs the scaled
tube width R/Rc for different number of turbulent harmonic
~curvesA,B,C,D correspond toNT51,5,30,150, respectively! with
Q57, Urms /U f50.5, andN5150.
0-10
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According to@31# the DL instability in the experiments wa
much stronger at a high pressure~0.5 Pa, circles!, and the
instability influence was considerably reduced at a low pr
sure~0.1 Pa, triangles!. Respectively, the theoretical curveA
of the present paper~turbulence plus the DL instability! de-
scribes well the high pressure data of@31#, while the curveB
~turbulence without instability! comes closer to the low pres
sure data. Another curious point of the experimental res
@31# is the saturation of turbulent flame velocity at very lo
turbulent intensityUrms /U f'1. According to the genera
theoretical understanding supported by experiments@22,23#
turbulent flame velocity increases with turbulent intensity
Uw /U f21}(Urms /U f)

2 at low intensity @3,5#, as Uw
}Urms at moderate intensity@20,5#, while at high turbulent
intensityUw becomes saturated or it may even decrease w
increase ofUrms @6,8,27#. Usually the saturation is observe
at the turbulent intensityUrms /U f57 –10 and higher
@22,23#, and only the experiments@31# demonstrate satura
tion at Urms /U f'1. Presumably, such low intensities
saturation are related to the unique high pressure exp
ments@31#. Still, a detailed study of the saturation effect
beyond the scope of the present paper, since it is couple
transition from the flamelet burning regime to the regime
thickened flames@6#. Results of the present paper are also
approximate agreement with the model numerical simu

FIG. 10. Scaled turbulent flame velocityUw /U f21 vs turbulent
intensity Urms /U f for Q57 andR55Rc ~solid line!. The dashed
linesA,B show evaluation of flame velocity for a 3D case with a
without the DL instability, respectively. The crosses show the
perimental results@23#. The circles and triangles present the expe
mental results@31# for 0.5 Pa and 0.1 Pa, respectively.
ci

A
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tions @32#, where the assumption of the potential flow of th
burnt matter@7,14,15# valid for Q21!1 has been extrapo
lated as a qualitative model to the case of realistically la
thermal expansionQ<5.

Another possible interpretation of the present results is
treat them as a subgrid study of flame dynamics in a co
bustor of a large scale with some turbulent intensity, which
not necessarily weak. In that case the tube widthR consid-
ered in the present paper should be interpreted as the u
limit of the short-wavelength band of the turbulent spectru
and Urms plays the role of a turbulent velocity on a leng
scaleR. Designating the ‘‘real’’ integral length scale and th
‘‘real’’ turbulent velocity by LT and UT we have for the
Kolmogorov spectrum

Urms /UT5~R/LT!1/3. ~44!

The limit of weak turbulence impliesUrms /U f!1, and we
took in our calculationsUrms /U f50.2–1. Taking into ac-
count the evaluation for the cutoff wavelength@24,25# we
find that the tubes of moderate widthR/Rc,5 considered in
the present paper correspond approximately toR'100L f or
R'100n/U f , wheren is kinematic viscosity with a charac
teristic value n'0.15 cm2/s. Then the integral velocity
needed to produce the subgrid turbulence withUrms /U f
50.2–1 on the length scaleR'100L f may be evaluated as

UT /U f5
Urms

U f
~R/LT!21/35

Urms

U f
S LTU f

100n D 1/3

. ~45!

If we take typical laminar flame velocityU f5100 cm/s
and the length scaleLT5100 cm comparable to the size of
gas turbine, then calculations of the present paper corresp
to the integral turbulent intensityUT /U f51 –10 and to the
respective turbulent Reynolds number ReT5UTLT /n5105–
106. The obtained estimate shows that the calculations of
present paper may be quite reasonable as a subgrid mod
a turbine combustor. Still in most of the laboratory combu
tion experiments@2,22,23# a smaller integral turbulent lengt
scale~about 1 cm in@23#! and a smaller value of the Rey
nolds number are employed ReT5102–104.

ACKNOWLEDGMENT

This work was supported by the Swedish Research Co
cil ~V.R.!.

-
-

.
d

@1# J. F. Griffith and J. A. Barnard,Flame and Combustion
~Blackie Academic, London, 1995!

@2# A. N. Lipatnikov and J. Chomiak, Prog. Energy Combust. S
28, 1 ~2002!.

@3# P. Clavin and F. A. Williams, J. Fluid Mech.90, 589 ~1979!.
@4# A. R. Kerstein, W. T. Ashurst, and F. A. Williams, Phys. Rev.

37, 2728~1988!.
@5# V. Yakhot, Combust. Sci. Technol.60, 191 ~1988!.
.

@6# P. Ronney and V. Yakhot, Combust. Sci. Technol.86, 31
~1992!.

@7# B. Denet, Phys. Rev. E55, 6911~1997!.
@8# L. Kagan and G. Sivashinsky, Combust. Flame120, 222

~2000!.
@9# Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M

Makhviladze,The Mathematical Theory of Combustion an
Explosion~Consultants Bureau, New York, 1985!.
0-11



.

us

t.

oc

me

.

MAXIM ZAYTSEV AND VITALIY BYCHKOV PHYSICAL REVIEW E 66, 026310 ~2002!
@10# V. V. Bychkov, Phys. Fluids10, 2091~1998!.
@11# O. Yu. Travnikov, V. V. Bychkov, and M. A. Liberman, Phys

Rev. E61, 468 ~2000!.
@12# P. Cambray and G. Joulin, Combust. Sci. Technol.97, 405

~1994!.
@13# B. T. Helenbrook and C. K. Law, Combust. Flame117, 155

~1999!.
@14# G. I. Sivashinsky, Acta Astronaut.4, 1177~1977!.
@15# M. Frankel, Phys. Fluids A2, 1879~1990!.
@16# V. Bychkov, K. Kovalev, and M. Liberman, Phys. Rev. E60,

2897 ~1999!.
@17# V. V. Bychkov and M. A. Liberman, Phys. Rep.325, 115

~2000!.
@18# T. Poinsot, S. Candel, and A. Trouve, Prog. Energy Comb

Sci. 21, 531 ~1996!.
@19# P. Renardet al., Prog. Energy Combust. Sci.26, 225 ~2000!.
@20# V. Bychkov, Phys. Rev. Lett.84, 6122~2000!.
@21# V. V. Bychkov, M. A. Liberman, and R. Reinmann, Combus

Sci. Technol.168, 113 ~2002!.
@22# R. Abdel-Gayed, D. Bradley, and M. Lawes, Proc. R. S

London, Ser. A414, 398 ~1987!.
02631
t.

.

@23# R. C. Aldredge, V. Vaezi, and P. D. Ronney, Combust. Fla
115, 395 ~1998!.

@24# P. Pelce and P. Clavin, J. Fluid Mech.124, 219 ~1982!.
@25# G. Searby and D. Rochweger, J. Fluid Mech.231, 529

~1991!.
@26# G. Searby and P. Clavin, Combust. Sci. Technol.46, 167

~1986!.
@27# V. Bychkov and B. Denet, Combust. Theory Modell.6, 209

~2002!.
@28# R. C. Aldredge, Combust. Flame106, 29 ~1996!.
@29# V. V. Bychkov, S. M. Golberg, M. A. Liberman, and L. E

Eriksson, Phys. Rev. E54, 3713~1996!.
@30# V. V. Bychkov and A. I. Kleev, Phys. Fluids11, 1890~1999!.
@31# H. Kobayashi, Y. Kawabata, and K. Maruta, inProceedings of

the Twenty-Seventh Symposium on Combustion, edited by
C. K. Law et al. ~The Combustion Institute, Pittsburgh, 1998!,
p. 941.

@32# N. Peters, H. Wenzel, and F. A. Williams, inProceedings of
the Twenty-Eighth Symposium on Combustion, edited by
C. K. Law et al. ~The Combustion Institute, Pittsburgh, 2000!,
p. 235.
0-12


