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Effect of the Darrieus-Landau instability on turbulent flame velocity

Maxim Zaytsev? and Vitaliy Bychkov
lnstitute of Physics, Umelniversity, SE901 87, UméaSweden
2Moscow Institute of Physics and Technology, 141 700 Dolgoprudny, Russia
(Received 28 January 2002; published 28 August 2002

The propagation of turbulent premixed flames influenced by the intrinsic hydrodynamic flame instti@lity
Darrieus-Landau instabililyis considered in a two-dimensional case using the model nonlinear equation
proposed recently by BychkdPhys. Rev. Lett84, 6122(2000]. The nonlinear equation takes into account
both the influence of external turbulence and the intrinsic properties of a flame front, such as small but finite
flame thickness and realistically large density variations across the flame front. Dependence of the flame
velocity on the turbulent length scale, turbulent intensity, and density variations is investigated in the case of
weak nonlinearity and weak external turbulence. It is shown that the Darrieus-Landau instability influences the
flamelet velocity considerably. The obtained results are in agreement with experimental data on the turbulent
burning of moderate values of the Reynolds number.
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I. INTRODUCTION locity of flame propagatiof9—11]. Similar effects are ex-
pected for turbulent flamelets at least in the limit of weak and
Turbulent flame velocityJ,, is one of the basic character- moderate turbulent intensity. The role of the DL instability
istics of premixed turbulent combustion; it is a key parameteffor turbulent flamelets has been widely discussed, but in few
for phenomenological models of the combustion process angapers one could find real attempts to solve the problem
a promising tool for multidimensional computations of tur- because of the involved mathematical and computational dif-
bulent burning in real industrial deviced,2]. Turbulent ficulties [7,12,13. However, even these papers considered
combustion may proceed in several distinctive regimes withyn|y the limit of ultimately weak instability at small thermal
quite different propertie§1]. Among them the so-called expansior® —1<1 (or ®<2 in[13)). If one takes the arti-
“flamelet” regime is the most typical for practical systems ficial limit of zero thermal expansio®=1 like [3—6,8,

such as gas turbines of power plants or car engines. In t en the DL instability disappears. Even in the case of lami-

case of flamelet burning a chemical reaction occurs at faﬁllar flames the nonlinear theory of the DL instability has been

time scales and short length scales relative to the turbulent__. . . I
. . . restricted for a long time to the limit of small thermal expan-
ones. A flamelet propagates as a relatively thin front with the .

inner structure similar to the laminar flame of some thicknesss'onQ_ 1<1 [14’1‘:1.‘ Qua_n_t|tat|ve noqllnear theoretical de-
L,, but turbulent flow distorts the flame strongly on large scription of the DL instability for realistically large expan-

length scales in comparison with . Larger surface area of a Sion factors® was developed recent|t0,16,17. Of course,
corrugated flame front leads to larger consumption rate of thé1€ instability effect on turbulent flames could be studied by
fuel mixture, larger total heat release and larger velocity odiréct numerical simulations of the complete set of combus-
flame propagatiot,, in comparison with the laminar flame tion equations, but simulations performed so far considered
velocity U;. As a result, turbulence increases the powerflame dynamics on small length scales belovi (18,19,
available from a turbine combustor or internal combustionfor which the DL instability is thermally suppressed.
engine. Recently a nonlinear equation has been proposed, which
The regime of turbulent flamelets has been studied thedakes into account both the influence of external turbulence
retically for a long time and many interesting results haveand the DL instability with realistically large density varia-
been obtained3—-8]. However, most of these results were tions across the flame frofi20]. Preliminary evaluations of
restricted to the artificial limit of zero thermal expansion, the turbulent flame velocity on the basis of the obtained
when the density of the burnt mattgy is the same as in the equation[20,21] agree quite well with experimental results
fuel mixture p; with their ratio ® =p;/p,=1. In this limit  [22,23. Still, the particular solutions to the nonlinear equa-
flame propagates passively in the turbulent flow without aftion [20,21] did not include the direct influence of the DL
fecting the flow. Yet, most of the laboratory flames involve instability. Though such solution may be used to describe
considerable thermal expansiad@=5-10 for which the flame dynamics for a rather low integral turbulent length
flame interacts with the turbulent flow quite strongly. Due toscale of about30-50) ¢ as in experiment$23], a more
this reason the artificial limit of zero thermal expansi®n common experimental situation involves large length scales
=1 cannot provide a quantitative description of turbulentexceeding 100; considerablyf22], for which the DL insta-
flames. Besides, thermal expansion leads to qualitatively newility affects the flame velocity significantly. In the present
effects of flame-flow interaction such as the Darrieus-Landaypaper we solve the nonlinear equat{@®] in order to inves-
(DL) instability. In the case of laminar flames the DL insta- tigate the effect of the DL instability on the dynamics of
bility bends an initially planar flame front increasing the ve-turbulent flames.
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Il. MODEL EQUATION ture [24,25. Particularly, in the case of a flame with Lewis
number equal to unity and a constant coefficient of thermal

We solve the following model equation describing dy- conduction the respective formulas are

namics of a flame frorz=F(x,t) in a weakly turbulent flow

u(x,t): 041
- Ne=27Ls| 1+ ———InO |,
O+l 1+C,LD <1>—1a2|:+ 1+C,LD ! al:+1 s (0-1)° ’ )
20 ikt )U_?F ( oL )U_fﬁ
, c o OIne @
G 0-1 R =0, ==
~UulUrt 5 (TR e LTR)— (P P e
- In the case of an infinitely thin front E¢3) goes over to the
o1 1_&@)@:_ 1+ _ﬂ)ﬁzo_ (1)  Darrieus-Landau dispersion relation sincg<L [24]. Ac-
2 27 Ut dt) Uyg cording to Eq(3) small perturbations of a planar flame grow

, _ exponentially in time if the perturbation wavelength exceeds
_The above equation, Eql), has l_aeen propo_sed ia0}; and _ the cutoff wavelengtir .. Equation(3) is the first component
in the section below we explain the origin and the mainus the nonlinear mode(l).
components of the equation. Besides, we consider some par- |t 5 flame front propagates in a 2D channel of width
ticular solutions to Eq(1) obtained before. Equatiofl) is it ideally slip and adiabatic walls, then the DL instability
written in the reference frame of the average position of gq thermally suppressed in narrow tubes WRKR,=\ /2.
statis.tically stationary turbulent _ﬂame f_ront, yvith the_averageln wider tubesR> R, perturbations grow exponentially until
velocity U,, of flame propagation being slightly different nqnjinear effects come to play. In tubes of a moderate width
from the laminar flame velocity ;. The main advantage of g (4_5)R_ nonlinear stabilization takes place leading to a
Eqg. (1) in comparison with the earlier models of turbulent smooth curved stationary flame shdf8,11,26. The curved

flames[3-5] is that it takes into account realistically large flame shape and velocity may be described by the nonlinear
density variations across the flame front described by th%quation derived ifi10];

factor ®=p;/p,=1, which is the density ratio of the fuel
mixture p; and the burnt mattep,. Parametera..,C,,C, (©-1)3

(C) -
are related to the internal thermal-chemical properties of the 1—U,,/U;+ 5(VF)2+ [(VF)2—(DF)?]

flame front. These parameters have been found in the linear 166
theory of the DL instability of a flame of finite thickne&s 0—1 Ae s
[24,25. The operatod implies multiplication by the abso- - T( 1- Eq’)q)'::o’ 5

lute value of the wave number component along the flame
surface in Fourier space, which may be presented in the ca

of a two-dimensiona(2D) flow as %ﬂﬁereuw is the propagation velocity of a curvédrinkled)

flame front, which is larger thab; . The nonlinear terms in

. 1 Eq. (5) take into account both the cusp formation at the flame

CIJFz—J |K|F exp(ikx)dk. (2)  front and the vorticity production behind a curved flame.
27 Equation(5) has been derived for arbitrary expansion coef-

eficients (even large ongsassuming small but finite flame

thickness similar to the linear theofy24]. The thermal-

chemical properties of the burning mixture are taken into

Model equation(1) has been proposed on the basis of thre
rigorous theories: the linear theory of the DL instability by
Pelce and Clavif24], the nonlinear theory of curved flames . .
resulting from the instability by Bychkop 0], and the linear account in Eq(5) by the cutoff wavelength.., the analyti-

theory of flame response to weak turbulence by Searby an_%al formula for which coincides with the expression obtained

Clavin[26]. Below we explain briefly the main results of the In the !inear theory. The combinatiqn of E_c{sa)_and (5)
theories as well as components of the model equafian determines the effects of flame-flow mteraptmn in EY.in
It has been showii24] that the development of small the absence of external turbulence. The influence of turbu-

perturbations at an initially planar flame front may be de_lence is taken Into account according to the linear thé2ey
scribed by the equation for a flame front in a weak external flow

0+1 . O°F . . F 0+1 ¢°F LOF O-1 . .0
W(HclLfcb)F+(1+02qu>)ufq>ﬁ W?—Fufq)ﬁ_Tufq) F—{ U+ - |u,=0,
(6)
0-1 P
2 1_ﬁ¢) Ure“F=0. ) where u, is the z component of turbulent velocity at the

surfacez=0. Assuming weak nonlinear effects, weak turbu-
Equation(3) has been obtained taking into account small butence, and a thin flame front, we can combine E@8s. (5),
finite flame thicknes& . The numerical factor€,,C, and  and(6) into one model equatiofl), as it has been proposed
the cutoff wavelength. . depend on the internal flame struc- in [20].
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In the present paper we consider a 2D flame propagatinflame propagation. By this reason in the present paper we
in a “tube” of width R with adiabatic boundary condition at will use the Taylor hypothesis of “stationary” turbulence, for

the walls
dr 0 OR 7
&_ at X= [LAY] ( )
so that the flame shape may be presented as

F=> F cos{ an) (8)

with the operatord,

mn x)

dF=>, Fcos(R

Equation(1) for a 2D flow becomes

9)

11+CLci>ula2F+ 1+C,L D &F+1
2@( lf)Ufat ( 2 )Uat

2 (@_1)3

I
2\ T 160

2 | ax

JF\%2 . 2}
2

06— 11 R°<i>ci>F ) AN

2 T
(10

which pulsations caused by flame propagation are much
stronger than “real” temporal pulsations of the flow velocity
in Egs.(11) and(12). The Taylor hypothesis has been used in
many papers on turbulent flame dynami8ss—7,28. Since

the model equatiofil) is written in the reference frame of a
statistically stationary turbulent flame, then we have to go
over to the same reference frame in the formulas for the
turbulent velocity field(11) and (12). In the case of weak
turbulence we have the longitudinal turbulent velocity field
at the front positiorz= U t,

u,= 2, U; cogU kit + ¢;)cogkX). (14)

Equation(1) has been solved before in two particular cases:
(@) no turbulenceJ,,s=0, when dynamics of the flame front
is affected by the DL instability only(b) no direct influence

of the DL instability, when only external turbulence controlls
flame propagation. Below we consider briefly solution to Eq.
(1) in both cases.

A. Influence of the DL instability only

If the turbulent intensity is zert,,s= 0, then the model
equation(1) describes the linear development of the DL in-
stability at an initially planar flame front and subsequent
propagation of a wrinkled flame resulting from the instabil-

Incompressible 2D turbulence in the laboratory referencaty. As it has been pointed above, the instability develops and

frame may be described by the representafidn

u,= >, U; cogkz+ ¢;)cogkx), (12)

U=, U;sinkiz+ ¢))sin(kix), (12)

where we have taken the continuity condition into account.
In Egs. (11) and (12) k;=mi/R are the wave numbers of
turbulent harmonics and; stand for random phases. The
amplitudesU; of turbulent harmonics are determined by the

Kolmogorov spectrunJ;«k; *® with the rms-turbulent ve-

locity in one direction given by the formula

rms E U2/4

The number of turbulent harmonics in Eq$l) and(12)

13

a curved flame shape becomes possible in sufficiently wide
tubesR/R.>1 with the critical tube widthR,; determined by
thermal-chemical flame parameters: for examgs= A /2

in the case of a 2D flow in a channel with ideally slip and
adiabatical walls. If the channel width is not too large
R/R.<5, then the DL instability results in a smooth curved
flame shape propagating with veloc[t{0]

U,/U—1= 20(6-1)° MRC<1 MRC)
Wit 03+02+30-1 R R/
(15

where M =Int(2R/R.+ 1/2). Figure 1 presents the depen-
dence of the wrinkled flame velocity on the tube witRHR,

for the expansion factor®=5,7,9. As one can see, the
wrinkled flame velocity exceeds the planar flame velocity
because of the larger surface of fuel consumption. The dif-
ference between the wrinkled and planar flame velocities be-

is a free parameter of our model. In the case of a freelycomes larger for larger thermal expansi®n since largei®
propagating flame front thedependence of turbulent veloc- (larger density difference across the flaneads to stronger
ity also includes random phases. However, since we are irbL instability. The analytical formuldl5) agrees quite well
terested in flame propagation in a channel of finite widthwith the results of the direct numerical simulations of flame
with slip walls, then the boundary condition on the walls dynamics in tubeg11,29. As the tube width increases
requires zero phases. In general, the turbulent velocity fiel&R/R.— wrinkled flame velocity tends to a limiting value

(11) and (12) should also involve temporal pulsations. The
influence of temporal pulsations has been investigated re-
cently in[27], where it has been shown that temporal pulsa-
tions do not lead to any qualitatively new effect in turbulent

0(0-1)°
03+02+30-1'

1
Un/Ui=1=3 (16)
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0.4 r : : : : : Substituting Eq(18) into model equatioril) with the accu-
: ; ’ ‘ : ; racy of linear terms we come to a system of ordinary differ-
03 E ential equations foF;,
DA Ol retk—= P L= 9F
E; 02 | 5 = i)kiuf e ( ol i)Uf T
3 :
: 0-1
01 F — 5 (1=Reki/mkiF
U; T
0Fr :\/EU_ICO{Ufkit'i‘d)i'FZ (19)
0 1 2 3 4 5 f
R/R. with the following solution:
FIG. 1. Scaled velocity of a curved stationary flardg,/U; \/EU
—1 vs the scaled tube widiR/R, for different thermal expansion _ i m
®=5,7,9 according to Eq5) with no turbulence. Fi(h)= D;k;U; CO{ Ukit+ ¢+ 4 il (20

which determines a maximal possible velocity increase for avhere
stationary wrinkled flame. However, the maximal velocity 0—1 @41 )
may be achieved even for tupes of a modgrate width, for Di:[( (1—Rck; /7)— (1+C1Lfki))
example, forR=2R.. The maximal velocity increasel6) 2 20
depends only on the expansion facér 12

In the present paper we are interested, mostly, in flame +(1+ Cz'—fki)z} (22)
propagation in channels of moderate wid#R.<5, for
which the DL instability results in stationary wrinkled o ) ]
flames. In much wider tubes the curved stationary shape b@nd the phase shiff; is determined by the expressions
comes unstable with respect to the secondary DL instability 1 1 1
of a small scald16]. At that point it is interesting that the |z B 9t _

X ; Loon COsY; (1—Rkj /) (1+CyLk;)

model equatior(1) describes also the stability limits of the D;\ 2 20
secondary DL instability, which are in good agreement with (22)
the results of direct numerical simulatiofsL].

1
S|n’y|:5(l+C2Lfk|) (23)
B. Influence of external turbulence only :
The model equatioiil) has also a particular solution re- The average turbulent flame velocity is related to the nonlin-

lated to the external turbulence only with no direct influenceear terms of Eq(1),
of the DL instability. Such solution has been found[20]

for a 3D turbulent flow. We now obtain a 2D version of that O [[9F\?\  (0—1)°[9F\? HE)?
solution taking into account the condition of weak turbu- ~w =t =7 5\ | g% + 160 X —(PF)%),
lence. In the case of a turbulent fldd4) we can rewrite the (24)

turbulent terms of Eq(1) as follows:
where(- - -) denotes time and space averaging. Substituting

&1y, representatior(18) with amplitudes(20) into Eq. (24) we
1+ U; at) Ug find the turbulent flame velocity in the case of no direct
influence of the DL instability
U; .

=2 g [eodUikit+ g) —sinUrkit-+ ¢ Jeogkix) o _ U?

I
U - UW/Uf—124—U? ? (25)

i I

=> \/EU—; cos(UfkiH ¢i+Z cogk;x). a7

In the artificial limit of zero thermal expansio®@=1 and
R/L;—< the obtained formulg25) agrees with the well-

We can also look for a flame front positidh=F(x,t) ina  known Clavin-Williams formulg 3] written for the 2D tur-
similar form, bulence model$1l) and(12):

2

~ “Yrmms
F=3 Fi(t)cogkx). (18) VulUim =502

(26)
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12 : ; : : ; and the numerical factoi§,,C, are determined by the for-

' : ’ : : ’ mula (4). The turbulent flame velocity is shown for different
values of the expansion coefficie®t=5,7,9 and for differ-
ent turbulent intensityJ,,s/Us=0.2,0.5,1. As one can see,
the dependence of turbulent flame velocity on the tube width
differs considerably from the previous case of a flame af-
fected by the DL instability only. Now the critical tube width
R=R. is not a point of sharp bifurcation any more, but in-
stead one has a smooth resonancB=aR; [26]. In narrow
tubesR<R. before the resonance, a curved shape of a flame
front is also possible and the flame velocity exceeds the pla-
nar flame velocityd,,>U; . Still, the narrower the tube, the
RIR, stronger the stabilizing effects of thermal conduction and fi-

@) nite flame thickness. According to E¢28) at R—0 the

flame velocity is equal to the planar flame velocity. For wider
tubesR> R, after the resonance the turbulent flame velocity
decreases too, though for very wide tulles R, it tends to a
finite limit

o
08 [

0.6 f

U, /U;-1

04 f

0.2 f

403 U2,

U,/U;—1= .
M T 4924(02-20-1)2 U2

(29

Uy/U-1
[\

A curious point is that the limiting values for the turbulent
flame velocity Eq.(29) decrease with an increase of the ex-
pansion coefficien®. One can see the same tendency in Fig.
2(a) for ®=5,7,9 and a fixed turbulent intensity,,s/U;
R/R. ’ =0.5. The decrease of turbulent flame velocity in the case of
(b weak turbulence with no direct influence of the DL instabil-
ity has been obtained already [i20]. Such tendency is op-
tube widthR/R,, for one turbulent harmonic with no direct influence posite to the previous case of a wrinkled flame_ Shape caused
of the DL instability: (a) U,,s/U;=0.5 and different®; (b) for bY the DL |n.stab|I|ty'onIy, . WhI.Ch flame VeIOF:Ity Increases
®=7 and different turbulent intensities),, o/U;=0.2,0.5,1: v_wth 0. Besides, this tendency is also opposite to the situa-
curvesA,B,C, respectively. tion of strong turbulencdl]: strqngly turbulent fl_ames
propagate faster for larger expansion factérsThere is no

Both the velocity amplitudes); and the factordD; in Eq.  Physical explanation yet, why turbulent flame velocity de-
(25) depend on wave numbeks, which, in turn, are deter- Pends on thermal expansiéhin different ways for the cases
mined by the tube widttk, = i/R. As a result, Eq.(25) of weak and strong tprbulence. Finally, the dep'enden'ce of
specifies the dependence of the turbulent flame velocity ofHroulent flame velocityd,,/Uy on the turbulent intensity
the tube widthR. In order to understand the obtained depen-Urms/Us+ in the case of weak turbulence is the same as in the
dence better we consider first a simplified case of a turbulerf€lavin-Williams formula: U, /Us—1cU7 JU?, see Fig.
flow (14) modeled by a single harmonic 2(b).
The situation of a large number of turbulent harmonics in
u,=U; cog Uk t)cogk;x). (27 Eq. (14) is more realistic than a single turbulent mode. Par-
o ) _ ticularly, Fig. 3 presents the dependence of turbulent flame
Such a simplified assumption about a turbulent flow is oftenejocity on the tube width for 150 turbulent harmonics. As in
a single turbulent harmonic the expression for turbulenioefficient of thermal conduction. The main difference be-

FIG. 2. Scaled turbulent flame velocity, /U;— 1 vs the scaled

flame velocity becomes tween the plots in Figs. 2 and 3 is that the resonance is
L2 (@-1 R practically missing for muIti;caIed' turbulence of Fig. 3. For
Uy/U;—1=0 (1+7TC2_f) +{ (1_ _C) example, for the turbulent intensity,,s/U;=0.5 and the
R 2 R expansion facto® =5 the turbulent flame velocity depends
®+1 on the tube width in a quite monotonic way increasing from

21-1)2
_ Lf“ } Ulms (29) U; in narrow tubeR<R; to the limiting value Eq(29) in
20

+7C— . | .
'R Uf2 wide tubesR>R.. For larger expansion factors and larger

turbulent intensity the slight resonance may be still seen. The
The dependenc&8) is presented in Fig. 2 for the case of reduced effect of resonance Rt= R, for multiscaled turbu-
unit Lewis number Le=1 and a constant coefficient of ther- lence may be easily understood, since now a considerable
mal conduction, for which the cutoff wavelengif=2R. part of turbulent energy is spread between harmonics of a
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0.6 r : : : : : sults in a stationary curved flame fraisee Sec. [l A On the

: 5 5 : : : contrary, if the flame is affected by external turbulence only
with no direct influence of the DL instability, then the solu-
tion to Eq.(1) is strongly oscillating, see E¢20), Sec. Il B.
Therefore, it would be reasonable to look for a solution to
Eqg. (1) in the form of a combination of a stationary term
G(x) and a strongly oscillating terid (x,t):

U, /U;-1

F=G(x)+H(x,t). (30

Substituting Eq(30) into Eqg.(1) and taking time-average we
come to the following equation:

0 (aG\* (0-1)°[(aG\*> .
1-UulUt 5 ax) T (a_x) ~e
aH)Z (0—1)3 ( )2
*2\la) ) e \a) @)
@-—1( RCA)A
1- —o |dG=0, (3D
2 T

UW/Uf-]

where(- - ), denotes time averaging. The obtained equation
is similar to the stationary equatidd) describing the non-
linear stage of the DL instability with some correction terms
produced by turbulence. Eliminating E@1) out of Eq.(1)

we come to the time-dependent equation for the “turbulent”

’ 1 ’ R/R ’ * > part of the solution:
FIG. 3. Scaled turbulent flame velocity,, /U;— 1 vs the scaled 20 (1+CiLs®) —5- U2 I+( +C, )U s

tube widthR/R, for 150 turbulent harmonic with no direct influ- f

ence of the DL instability(a) U,,s/U;=0.5 and different®; (b) Of[oH\? gH\? dG oH
for ®=7 and different turbulent intensitiesU,,s/U; +§ x| T\ ax +0 IX OX
t

=0.2,0.5,0.7,1: curvel,B,C,D, respectively.

(0-1)3[oG oH . . (0—1)3[[aH\?
smaller scale, which have resonance at different points. Apart + T80 |dx ox OH |+ { (5)
from the resonance effect, other tendencies of the turbulent
flame velocity remain qualitatively the same for the multi- R JH\2 . —
scaled turbulence and for a single turbulent harmonic. —(PH)?— < (5) —(<I>H)2> -
t
Ill. FLAME UNDER SIMULTANEOUS ACTION cala 1y u,
OF TURBULENCE AND THE DL INSTABILITY X1 P PR I e 5) g, % @

A. Th thod of soluti - .
€ method of solution In the limit of weak turbulence and weak nonlinear effects

The main purpose of the present paper is to understangll nonlinear terms in Eq32) may be neglected, since they

flame dynamics affected both by the DL instability and by give only small corrections tél, and we come to the linear
external turbulence, that is, to find a more general solution tequation

Eq. (1). Direct numerical simulations are one of the possible

methods to solve Eq1). However, direct numerical simula- O+1 b1 H2H

tions are typically characterized by a relatively lower accu- g~ (1+Cy qu))_ ?+(1+C L)
racy than the solution to an eigenvalue problem, and simu- U5

lation results are more difficult for analysis. By this reason, _
we will solve Eq.(1) as an eigenvalue problem in a semi- __(1_ —(I))(TJH—
analytical way taking into account the conditions of weak 2

turbulence U,,s/U;<1 and weak nonlinear effects (33
(9F/9x)?<1 used in the derivation of Eq&3), (5), and(6).

In that sense we would like to stress that in tubes of moderThen the oscillating terril (x,t) is specified by external tur-
ate width with no external turbulence the DL instability re- bulenceu, only independent of the stationary tefa{x) [see

Ué’t
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Eqg. (33)]. On the other hand, averaged terms wiitlix,t)
play the role of “external force” in the stationary equation
(31). The solution to Eq(33) coincides with the solution to
Eq. (1) presented in Sec. Il B. Taking turbulent harmonics
in the representatioil4) we look for the oscillating term
H(x,t) in the form

Ny .
H(x,t)= >, Hi(t)cos<77—lx) (34)
= R
and find
U
Hi(t)= D kacos(U kit+ ¢+ — +'y| , (35

whereD; andy; are determined by Eq&1)—(23). Formulas
(34) and (35) specify the “external force”

e

160 || ax
in Eq.(31). We solve Eq(31) numerically with the boundary
conditions(7) taking G(x) in the form

o2

R
We would like to stress that the number of harmorisin
Eqg. (34 and N in Eq. (36) are two different values. The

0]

2

JH
X

2
_ (dbf1)2>
t

N
R
c;(x)=i:2l —G (36)

former, N, shows the number of turbulent modes in the
representatioril4) and plays the role of a free parameter of

the model. Particularly, Eq28) has been obtained under the
assumption of a single turbulent modé;=1. On the con-
trary, the valueN in Eq. (36) shows the number of Fourier
harmonics in the numerical solution to E1), which is
determined by the accuracy requirements.

In order to simplify the numerical solution it is useful to
perform the following auxiliary calculations:

I=N

oG\2 12 TmX wlx
(5) :——mEOAmcos( = )+— E B|cos( R)
(37)
- mx Ix
(HG)2== 2 A, s(w ) Z B, cos(WR)
(38)
9G\ 2 N TMX
_ 2_ it
ﬂx> (®G)2= mEZO Amcos( = ) (39)
where AO A;=0, A,=3" GiGm,i for m=2; B,

=3N ,G?, By=0, andB,= =1GiGm+i for 1<I<N-1.
After substltuting Eqs(34) and (37) in to Eq. (31) and av-
eraging in time we obtain with help of Eq&38)—(40) the
following system of algebraic equations fo&; and
Urms/Uf_l
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FIG. 4. SpectrunG; of the numerically obtained stationary so-
lution G(x) to Eg. (42) for R/IR,=5, U,,s/U;=0.5, ®=7, N
=150, andN;=150.

where we have introduced the designation

U2,/(D%,U?) if i mod 2=0 and N;=i
0, if i mod 2#0 or 2N;<i.

turb_
i

(42

The systemg40) and (41) have been solved numerically.
However, instead of solving E¢41) directly we have intro-
duced and solved the following system of ordinary differen-
tial equations involving virtual “time”¢:

dGi_G . R OB, 1{ 6 (©-1)
de Cl\t'RITe-1 2le-1 " e
X (A+ANTP)  for i=1 (43

with arbitrary initial values but a fixed value &./R. We
have found numerically that the solution to the syster®)
tends to a unique set of “stationary” valu€ with a suffi-
ciently small step of virtual “time”¢ independent of the
chosen initial values o6, . The obtained set of “stationary”
values gives the solution to E¢11) and the turbulent flame
velocity (40). The spectral method of numerical solution to
Eqg. (31) with boundary conditiong7) provides very good
accuracy. For example, even takihNg=30 Fourier harmon-
ics in Eq.(36) we got 5% accuracy of calculations for the
turbulent velocityU,,/U;—1. In most of the calculations we
used a much larger valué= 150 providing the accuracy far
better than 1% and good convergence of the Fourier expan-
sion EQ.(36). As an illustration, Fig. 4 shows a spectrum of
the numerically obtained solution to Egt1) for R/R.=5,
Ums/U;=0.5 6=7, N=150, andN;=150. As one can
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see, in that case the amplitude of the first harmonic exceeds
the amplitude of the 100th harmonics by five orders of mag-
nitude. The chosen accuracy of numerical calculations was
quite sufficient taking into account that assumptions used in
the basic equatiofil) [that is, in the derivation of the origi- —
nal theorieg3), (5), and(6)] hold with much worth accuracy ;3“
of about 30% and less. As a test of the numerical method we =
have solved first the stationary nonlinear equatiby and

the numerical result coincided with the exact analytical so-
lution, Eqg.(15). In order to imitate a multiscaled turbulence

we took the number of turbulent harmonics in Eg§4) Ny

=150 to be the same ds. Besides, we have also investi-
gated the case of a single turbulent made=1, which may

be useful in the future for comparison with direct numerical
simulations.

B. Results of numerical solution

The main dimensionless parameters that determine the
dynamics of curved flames in ideal tubes are the scaled tube &
width R/R., the turbulent intensity,,,s/U¢, and the expan- =)
sion factor of the burning mixtur®. To be particular, in all =
calculations we took unit Lewis number £& and a con-
stant coefficient of thermal conduction. First of all we have
investigated the dependence of the turbulent flame velocity
U,ms/Us—1 on the scaled tube width for different values of
0 andU,,s/U;. We have been interested mostly in tubes of
moderate widthR/R.<5, realistic expansion coefficien
=5-10 and weak external turbulendé,,s/U;<1, for
which the basic equatiofl) may be valid.

The results of numerical solution are presented in Figs.
5-7 for Nt=150 turbulent harmonics. Particularly, Fig. 5
shows scaled turbulent flame velocity,,,s/Us—1 versus
the scaled tube widtR/R; for some fixed expansion factor
[®=5,7,9 for Figs. %), 5(b), 5(c), respectively and differ- n
ent turbulent intensity. As one can see, the dependence re—;é
mains qualitatively the same, as we had in the case of no =
influence of the DL instability, Sec. 1B, Fig.(8). In all
plots turbulent flame velocity increases from the planar flame
velocity U; in narrow tubeR/R.<1 to some limiting value
in wide tubesR/R.>1. The increase may be quite mono-
tonic, as we have, for example, f@®=5 and U,,s/U;

=0.5. For smaller turbulent intensity,,s/U;=0.2 one can 0 ' 2 ’ ‘ i

easily see the trace of bifurcation “humps” typical for the R/R.

case of the DL instability without turbulence, see Sec. Il A, ©

Fig. 1. For larger turbulent intensity,,s/Us=1 and larger

expansion factor® =7,9 the bifurcation “humps” vanish, FIG. 5. Scaled turbulent flame velocity,, /U¢—1 vs the scaled

but instead one can observe the resonanc®-aR. de- tube widthR/R.. CurvesA,B,C,D correspond to valuebl s/
scribed in Sec. I B, Fig. 3. Judging by the qualitative look of Ur=0.2,0.5,0.7,19=5,7,9 on figuresa), (b), (c), respectively.

the plots in Fig. 5, one could conclude that the influence of

the DL instability becomes small already for,s/U;=0.5.

However, this conclusion is wrong as one can see comparingicreasing the scaled flame velocity almost three times. As a
Fig. 5(b) and Fig. 3b) quantitatively. Indeed, choosing the matter of fact, for such strong velocity increase the basic
problem parameterB/R.=5, U,,,s/U;=0.5, and®=7 as  equation(1) does not hold any more, still it may show gen-
an example we find an increase of the turbulent flame veloceral features of flame front dynamics under simultaneous ac-
ity U,,/U;—1~1.13 taking into account the DL instability tion of external turbulence and the DL instability. To make
and U,,/U;—1~0.42 without the instability. Thus, though the difference between the cases with and without the DL
the DL instability does not bring anything qualitatively new instability more distinctive we present the characteristic ve-
into the plot, it leads to considerable quantitative changesocity increaseU,,/U;—1 at R/R.=5 versusU,,s/Us in
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0.8 1

Upny/ Ug

FIG. 6. Scaled turbulent flame velocity,,/U;—1 for R=5R,
vs turbulent intensityJ,,s/Us. The solid and dashed lines show
the solutions with and without the DL instability, respectively.

PHYSICAL REVIEW E66, 026310(2002

for a particular solution without the instability. A curious
point of Fig. 6 is that the obtained instability influence is
much stronger than just formal adding of the “instability”
solution of Sec. Il A to the “purely turbulent” solution of
Sec. I B.

Figure 7 presents plots similar to Fig. 5, but now we fix
turbulent intensity and study the scaled velocity of flame
propagationd,,/U;—1 for various expansion factof3. At
that point one has to remember, tha},/U¢—1 depends on
0 in a different way for the cases of a flame affected by the
DL instability only or by weak external turbulence only. For
the former case it increases with the expansion fattee
Sec. Il A), while for the latter case it decreasése Sec.
IIB). One can observe both tendencies in Fig. 7 for the lim-
iting values ofU,,/U;—1 achieved for relatively wide tubes,
e.g.,R/R.=5. In Fig. 7a) the turbulent intensity is rather
smallU,,s/U;=0.2 and the characteristic flame velocity at
R/R.=5 increases wit® similar to the nonlinear stage of
the DL instability. In Figs. Tb—d) the turbulent intensity be-
comes largerU,,,s/U;=0.5—-1 and the flame velocity at

Fig. 6 for both cases. As one can see, the DL instabilityR/R.=5 decreases with the expansion fadtbas it happens
increases the turbulent flame velocity considerably for alifor weak turbulence with no direct influence of the DL insta-

turbulent intensities in the domaib,,s/U;<1. Besides,
when turbulent intensity goes to zeth,,s/U;—0, the in-

bility.
We have also investigated the case of a single turbulent

stability still provides a nonzero increase of the flame velocsharmonicN;=1 popular in numerical simulatior8,27,2§.
ity U, /U;—1=0.3—-0.4. Obviously, this does not happen Figure 8 presents the velocity of flame propagation for that

05 ¢
04 F
- 03 F
S ol
D E
0.1
O E
0 1 2 3 4 5
R/R,
(@
1.6
=
o

(b)

25 |

U, /U;-1

UW/IJf-]

(d

FIG. 7. Scaled turbulent flame velocity,, /U;—1 vs the scaled tube widtR/R;; U,,s/U;=0.2,0.5,0.7,1 on figure®), (b), (c), (d),
respectively. To distinguish plots we used a dashed ling)ifior @ =7.
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0.8 1

UW/[Jf - 1

U /U, -1

FIG. 8. Scaled turbulent flame velocity,, /U;—1 vs the scaled
tube width R/R; with one turbulent harmonitN;=1; U,,s/U;
=0.2,0.5,1 on figuresa), (b), (c), respectively.

case versus the scaled tube width fér=5,7,9 and

PHYSICAL REVIEW E 66, 026310(2002

UW/Uf-]

FIG. 9. Scaled turbulent flame velocity,, /U;—1 vs the scaled
tube width R/R, for different number of turbulent harmonics
(curvesA,B,C,D correspond tdN+=1,5,30,150, respectivelyith
0=7, U;ns/U;=0.5, andN=150.

IV. DISCUSSION

The results on turbulent flame dynamics obtained in the
present paper may be interpreted in two ways. First, they
may be used to understand flame dynamics in experiments
with a relatively small integral turbulent length scdtmm-
parable to the cutoff wavelength of the DL instability) and
relatively low turbulence intensity. Experiments of this type
have been presented [i@3], where the ratio of the channel
width to the flame thicknesg&he Peclet numbérvaried as
R/L;=50-250. Since the cutoff wavelength is typicaNy
=(20-50); [24,25, the experiment conditions if23] are
similar to the case of tubes of a moderate widid R/R,
<5 considered in the present paper. Unfortunately, one can-
not compare results of the present paper to the experimental
results directly, since the present results describe a 2D flame,
while the experimental flow is obviously a 3D one. Still, an
indirect comparison is possible. For that purpose, one may
remember that in the case of the DL instability the increase
of flame velocity is twice larger for a 3D geometry in com-
parison with a 2D ong¢30]. The same relation holds for the
velocity increase of a weakly turbulent flame with no influ-
ence of the DL instability20]. Thus, it would be quite natu-
ral to expect that, when both effects work together, the ve-
locity increase is also twice larger for a 3D flow in
comparison with a 2D flow of the present paper. Such evalu-
ation is shown in Fig. 10 fo® =7, R/R,=5 by the dashed
line A, which agrees rather well with the experimental results
[23] presented by crosses. Accurate investigation of the tur-
bulent flame velocity in a 3D flow requires time-consuming
calculations and will be a subject of future work. For com-
parison, Fig. 10 shows also turbulent velocity for a 3D par-
ticular solution to Eq(1) without any direct influence of the
DL instability (dashed lineB). This plot goes noticeably be-

Ums/U¢=0.2,0.5,1. The main difference between the casetow the experimental pointg23], which demonstrates once
of a single turbulent harmonic and a multiscaled turbulencenore the importance of the DL instability for turbulent

is @ much more pronounced resonancéRatR.. Figure 9

flames. It is also interesting to compare the theoretical curves

shows how the velocity of flame propagation depends on théo the experimental resul{81], where the influence of the
number of turbulent harmonids$;: the more harmonics we DL instability on turbulent flames in {£ig-air mixture has

take, the smoother resonance we geR&tR..

been controlled by varying pressure in the burning chamber.
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7 : ; : : tions[32], where the assumption of the potential flow of the
I S T N . . burnt matter{7,14,1§ valid for ® —1<1 has been extrapo-
. 5 5 5 e lated as a qualitative model to the case of realistically large
T e e R L thermal expansio® <5.
—_ : ; : ; P4 * Another possible interpretation of the present results is to
i 4 P /:_J“ """"" treat them as a subgrid study of flame dynamics in a com-
2 g Fo e +/o+/ bustor of a large scale with some turbulent intensity, which is
= . : ’ & oj,+/+ not necessarily weak. In that case the tube widtbonsid-
2t : : 5 ered in the present paper should be interpreted as the upper
limit of the short-wavelength band of the turbulent spectrum,
! and U, s plays the role of a turbulent velocity on a length
0 scaleR. Designating the “real” integral length scale and the
0 0.2 04 0.6 0.8 1 “real” turbulent velocity by L+ and Ut we have for the
Up/ U Kolmogorov spectrum
FIG. 10. Scaled turbulent flame veloclty, /U;—1 vs turbulent Ums/Ur=(R/ILT)Y. (44)

intensity U,,s/Us for ®=7 andR=5R, (solid line). The dashed
linesA,B show evaluation of flame velocity for a 3D case with and The limit of weak turbulence impliebl;,s/U;<1, and we
without the DL instability, respectively. The crosses show the ex+tgok in our calculationdJ,,s/U;=0.2—1. Taking into ac-
perimental resultf23]. The circles and triangles present the experi- count the evaluation for the cutoff wavelendt®4,25 we
mental result¢31] for 0.5 Pa and 0.1 Pa, respectively. find that the tubes of moderate wid®R.<5 considered in

. ) o i the present paper correspond approximateliR40100L; or
According to[31] the DL instability in the experiments was g 100v/U;, wherew is kinematic viscosity with a charac-
much stronger at a high pressuf@5 Pa, circleg and the  teriiic value »~0.15 cn?/s. Then the integral velocity
instability influence was considerably reduced at a low presyaaged to produce the subgrid turbulence with,./U;

S

sure(0.1 Pa, triangles Respectively, the theoretical curge =0.2—1 on the length scaR~100_; may be evaluated as
of the present papdturbulence plus the DL instabilijyde-

scribes well the high pressure datg 81], while the curveB
(turbulence without instabilifycomes closer to the low pres-
sure data. Another curious point of the experimental results
[31] is the saturation of turbulent flame velocity at very low
turbulent intensityU,,s/U;~1. According to the general If we take typical laminar flame velocityd;=100 cm/s
theoretical understanding supported by experimg2®s23  and the length scaler=100 cm comparable to the size of a
turbulent flame velocity increases with turbulent intensity asgas turbine, then calculations of the present paper correspond
Uw/Ui—1(U;ns/Up)? at low intensity [3,5], as U,  to the integral turbulent intensity;/U;=1-10 and to the
«Ums at moderate intensit}20,5], while at high turbulent respective turbulent Reynolds numberR&JL/v=10"—
intensityU,, becomes saturated or it may even decrease withi(P. The obtained estimate shows that the calculations of the
increase ol [6,8,27. Usually the saturation is observed present paper may be quite reasonable as a subgrid model for
at the turbulent intensityU,,s/Us=7-10 and higher a turbine combustor. Still in most of the laboratory combus-
[22,23, and only the experimen{81] demonstrate satura- tion experiment$2,22,23 a smaller integral turbulent length
tion at U;,s/Us=1. Presumably, such low intensities of scale(about 1 cm in[23]) and a smaller value of the Rey-
saturation are related to the unique high pressure experirolds number are employed Re10?—10".

ments[31]. Still, a detailed study of the saturation effect is

beyond the scope of the present paper, since it is coupled to ACKNOWLEDGMENT

transition from the flamelet burning regime to the regime of

thickened flame§6]. Results of the present paper are also in  This work was supported by the Swedish Research Coun-
approximate agreement with the model numerical simula€il (V.R.).

Urms LTUf

Urms s 1/3
UT/UfZU—f(R/LT) :U_f 1000 - (45)
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